Delphi-PRAXiS

Delphi-PRAXiS (https://www.delphipraxis.net/forum.php)
-   Library: Algorithmen (https://www.delphipraxis.net/28-library-algorithmen/)
-   -   Delphi Annäherungsweise Errechnung von PI (https://www.delphipraxis.net/36968-annaeherungsweise-errechnung-von-pi.html)

CalganX 28. Dez 2004 20:00


Annäherungsweise Errechnung von PI
 
Liste der Anhänge anzeigen (Anzahl: 1)
Zwar kann man mit Hilfe der Konstante Pi aus der Unit System (?) den Wert von Pi verwenden, allerdings gibt es sicherlich einige, die gerne aus einem Algorithmus den Wert haben wollen und/oder von diesem Algorithmus was lernen sollen.
Der Algorithmus, den ich hier poste, ist sicherlich der beste, allerdings habe ich bisher keinen anderen soweit verstanden, dass ich ihn in Code-Form habe. Jeder, der einen anderen (vllt. besseren) hat, der kann ihn ja hier posten.

Der Algorithmus arbeitet folgendermaßen: man unterteilt ein Kreis-Viertel in n Segmente und berechnet den Flächeninhalt. Die Skizze in Anhang 1 soll das ein wenig verdeutlichen (geht einfach davon aus, dass alle Rechtecke gleich breit sind!), wie das gemacht wird. Man addiert einfach immer die Flächeninhalte der schwarzen mit der Hälfte des Flächeninhaltes des roten Rechtecks und addiert im Endeffekt alle diese Summen. Je größer nun die Anzahl der Kreissegmente ist, desto genauer wird die Berechnung.
Um nun Pi zu errechnen, muss man als erstes einen Radius von eins wählen, also die Berechnung in einem Einheitskreis durchführen. Außerdem muss man den errechneten Flächeninhalt noch mit vier multiplizieren, um auf den Kreisinhalt zu kommen. Der Kreisinhalt sollte - wenn ich mir nirgendwo einen Knoten in's 'Hirn gedacht habe - dann Pi sein.

Das ganze sieht dann als Delphi-Quellcode so aus:
Delphi-Quellcode:
function TfrmMain.CalcValueOfPi(n, r: longint): extended;

  function StepSum(const CurI, GenN, GenR: longint): extended;
  begin
    Result := (GenR / GenN) * sqrt(sqr(GenR) - sqr(CurI*(GenR / GenN)));
  end;

var
  i: integer;
  iSum: extended;
begin
  iSum := 0;
  for i:=1 to n do
  begin
    iSum := iSum + StepSum(i, n, r);
  end;
  Result := (iSum + ( (1/2)*((r / n) * r) ) ) * 4;
end;
Bitte bedenkt, dass ihr Pi nicht genauer, als 19 Stellen errechnen könnt, weil Extended nicht mehr kann. Zumindest nicht so in dieser Variante, es ließe sich zwar machen, aber wie das möglich ist, soll jeder selber herausfinden, wenn er es braucht. :zwinker:

Ich hoffe ich habe alles - trotz Ferien - soweit richtig gemacht. Jedenfalls funktioniert der Algorithmus. ;)
Chris

[edit=Matze]Code formatiert. Mfg, Matze[/edit]
[edit=flomei]Wir "räumen auf", daher Titel geändert... Mfg, flomei[/edit]

CalganX 16. Mai 2005 11:45

Re: Algorithmus zur annäherungsweisen Errechnung von PI
 
gordon freeman hat hier noch einige Ergänzungen. Unter anderem mit weiteren Verfahren zur Approximation von Pi.


Alle Zeitangaben in WEZ +1. Es ist jetzt 03:32 Uhr.

Powered by vBulletin® Copyright ©2000 - 2020, Jelsoft Enterprises Ltd.
LinkBacks Enabled by vBSEO © 2011, Crawlability, Inc.
Delphi-PRAXiS (c) 2002 - 2020 by Daniel R. Wolf