AGB  ·  Datenschutz  ·  Impressum  







Anmelden
Nützliche Links
Registrieren
Zurück Delphi-PRAXiS Programmierung allgemein Programmieren allgemein Die Groß-O Notation im worst case.
Thema durchsuchen
Ansicht
Themen-Optionen

Die Groß-O Notation im worst case.

Ein Thema von Kanikkl · begonnen am 20. Dez 2009 · letzter Beitrag vom 20. Dez 2009
 
Kanikkl

Registriert seit: 11. Okt 2009
Ort: Soest
10 Beiträge
 
#3

Re: Die Groß-O Notation im worst case.

  Alt 20. Dez 2009, 07:02
Vielen Dank erst einmal für deine Ausführliche antwort...

was ich aus deiner Definition verstanden habe ist folgendes:

-> Wenn man herausfinden will, zu welcher Klasse gehört, muss man die Gleichung f(n) zu c*n oder c*n² (oder c*n³) kleiner setzen : f(n)<c*n²
-> Wenn man ein C und ein X_0 ermitteln kann, dann kann man sicher davon ausgehen, dass sie zur Klasse O(n²) gehört..

-> Explizit gilt für die Rechnung: erst einmal durch die Klasse teilen, in die man die Gleichung vermutet: z.b. /n oder /n² Und dafür gilt, dass n > 0 sein muss.

Hab aber ein paar Fragen zu

Zitat:
Nun setzen wir x_0 := 10, womit gilt 5/x + 6/x² < 1.
Jetzt suchen wir uns ein c, so dass c-2 >= 1, zum Beispiel c := 1
- Wieso sagt man x_0 und setzen wir für x_0 eine beliebige Zahl ein, damit f(n) (müsste ja eig f(x) heißen *g*) möglichst klein ist und x > 0 erfüllt ist?


-----

Und genau so viel brauchen wir auch Wenn du mir meine offen Frage noch beantworten würdest, wär das super ^^
  Mit Zitat antworten Zitat
 


Forumregeln

Es ist dir nicht erlaubt, neue Themen zu verfassen.
Es ist dir nicht erlaubt, auf Beiträge zu antworten.
Es ist dir nicht erlaubt, Anhänge hochzuladen.
Es ist dir nicht erlaubt, deine Beiträge zu bearbeiten.

BB-Code ist an.
Smileys sind an.
[IMG] Code ist an.
HTML-Code ist aus.
Trackbacks are an
Pingbacks are an
Refbacks are aus

Gehe zu:

Impressum · AGB · Datenschutz · Nach oben
Alle Zeitangaben in WEZ +1. Es ist jetzt 08:28 Uhr.
Powered by vBulletin® Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
LinkBacks Enabled by vBSEO © 2011, Crawlability, Inc.
Delphi-PRAXiS (c) 2002 - 2023 by Daniel R. Wolf, 2024-2025 by Thomas Breitkreuz