AGB  ·  Datenschutz  ·  Impressum  







Anmelden
Nützliche Links
Registrieren
Thema durchsuchen
Ansicht
Themen-Optionen

Unendlich <> Unendlich!

Ein Thema von Aphton · begonnen am 7. Nov 2010 · letzter Beitrag vom 9. Nov 2010
Antwort Antwort
Benutzerbild von JasonDX
JasonDX
(CodeLib-Manager)

Registriert seit: 5. Aug 2004
Ort: München
1.062 Beiträge
 
#1

AW: Unendlich <> Unendlich!

  Alt 9. Nov 2010, 17:07
Ok, bevor wir weitermachen, kläre ich jetzt einfach nur mal folgende Frage: Bildet (R#\{-∞,∞}, +, *) einen Körper? Oder anders ausgedrückt: Wie sind + und * auf R# definiert? Diese Frage zielt insb. auf die Definition von * und + auf Elemente in R#\{-∞,∞} ab.
Deine Frage ist ziemlich sinnlos, weil die Menge R#\{-∞,∞} naürlich R ist und mit den auf R unveränderten Operation + und * einen Körper bildet.
Die Frage ist keineswegs sinnlos. Wie dahinter beschrieben gings mir darum, ob + und * neu definiert werden, d.h. ein anderes Verhalten beschreiben könnten als die "gewöhnliche" Addition/Multiplikation der rellen Zahlen oder einfach diese einfach nur erweitern.
Die Frage stellt sich deshalb: Wären * und + anders definiert, könnte man Tarskis Axiome darauf nicht anwenden, und vllt. würde das auch keinen Widerspruch geben - das hinge dann von der Definition von + und * ab. So aber bilden die gegebenen Rechenregeln einen Widerspruch, wie bewiesen.

Wenn nun R erweitert wird, und mit + und * gerechnet wird, wird also mit einem Tupel (R, +, *) gearbeitet.
Nein, mit (R#,+,*).
Ich meinte als Basis für die Erweiterung. Das, was ich mit meiner Frage im letzten Beitrag klären wollte.

Entweder es ist nicht der Körper der reellen Zahlen gemeint, womit der gesamte Absatz im Artikel sinnbefreit wäre, da man zwar die Operatoren für manche Elemente beschreibt, aber nicht für alle,
Du scheinst keinen Sinn zu sehen, andere wohl schon. Zumindest soviel Sinn, daß es sogar modelhaft hardwaremäßig implementiert wird.
Zum einen wäre es in der Tat sinnfrei, Operationen zu verwenden, die nicht vollständig definiert sind, zum anderen: Die FPU implementiert ∞ um zu zeigen, dass das Ergebnis einer Operation zu groß war um intern dargestellt werden zu können, nicht weil ein entsprechendes mathematisches Konzept dahinter Sinn machen würde. R + { IchBinKeineZahl } muss auch nicht Sinn machen, bloß weil die FPU ein NaN kennt...

oder man beruht sich tatsächlich auf den Körper der reellen Zahlen, was aber zu einem Widerspruch führt, wie oben gezeigt.
Ich sehe keinen Widerspruch, da sich Deine Argumenation auf eine andere Struktur bezieht, denn niemand will beweisen oder axiomatisch fordern, daß ∞ eine relle Zahl ist.
Niemand hat behauptet, dass ∞ eine reelle Zahl ist. Ich habe bloß gezeigt, dass die vorgeschlagenen Rechenregeln mit den Axiomen der reellen Zahlen im Widerspruch stehen. Nicht mehr, aber auch nicht weniger.
Zwar mag man nun argumentieren, dass (R#, +, *) dann eben einfach nur ein komplett neues Konzept ist, das unabhängig von (R, +, *) getragen wird - dann muss (R#, +, *) aber auch axiomatisch neu definiert werden, und darf (bzw. sollte) nicht auf den Axiomen der rellen Zahlen basieren, im Sinne von "ich nehme einfach R, füg 2 Elemente hinzu und erweiter + und *".

zB ist es mM irrelevant, daß (jfheins) 1+x > x für alle x aus R gilt, aber nicht für alle x aus R#. Das gleiche trifft auch auf C zu
Das ist so nicht richtig. Zum einen sind die komplexen Zahlen keine "Bereichserweiterung", sondern eigentlich ein Vektorraum, zum anderen ist ein Vergleichsoperator für C nicht definiert.

Aber ich werde nicht weiter an dieser Diskussion teilnehmen, weil offensichtlich kein Interesse an dem -gar nicht von mir angestoßenen- Thema besteht
Wieso besteht kein Interesse? Wir diskutieren hier doch eigentlich relativ fleißig - wir sind uns nur nicht einer Meinung

greetz
Mike
Mike
Passion is no replacement for reason

Geändert von JasonDX ( 9. Nov 2010 um 19:16 Uhr)
  Mit Zitat antworten Zitat
Antwort Antwort


Forumregeln

Es ist dir nicht erlaubt, neue Themen zu verfassen.
Es ist dir nicht erlaubt, auf Beiträge zu antworten.
Es ist dir nicht erlaubt, Anhänge hochzuladen.
Es ist dir nicht erlaubt, deine Beiträge zu bearbeiten.

BB-Code ist an.
Smileys sind an.
[IMG] Code ist an.
HTML-Code ist aus.
Trackbacks are an
Pingbacks are an
Refbacks are aus

Gehe zu:

Impressum · AGB · Datenschutz · Nach oben
Alle Zeitangaben in WEZ +1. Es ist jetzt 00:02 Uhr.
Powered by vBulletin® Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
LinkBacks Enabled by vBSEO © 2011, Crawlability, Inc.
Delphi-PRAXiS (c) 2002 - 2023 by Daniel R. Wolf, 2024-2025 by Thomas Breitkreuz