AGB  ·  Datenschutz  ·  Impressum  







Anmelden
Nützliche Links
Registrieren
Zurück Delphi-PRAXiS Programmierung allgemein Algorithmen, Datenstrukturen und Klassendesign Delphi Wie mathematisch einer gewünschten Lösung nähern?
Thema durchsuchen
Ansicht
Themen-Optionen

Wie mathematisch einer gewünschten Lösung nähern?

Ein Thema von Cyberstorm · begonnen am 11. Jul 2013 · letzter Beitrag vom 17. Jul 2013
 
Benutzerbild von jfheins
jfheins

Registriert seit: 10. Jun 2004
Ort: Garching (TUM)
4.579 Beiträge
 
#8

AW: Wie mathematisch einer gewünschten Lösung nähern?

  Alt 12. Jul 2013, 15:20
Ich habe dir da malwas zusammengetippt. Es ist in MATLAB geschrieben, aber die Formeln sollten sich ja übertragen lassen.
Das ganze verwendet das Newton-Verfahren, weil es a) schnell konvergiert und b) die Ableitung relativ einfach ist (konstant)
Zumindest habe ich das probiert, in der einen Richtung gewinnt man leider nur 1,6 Stellen pro iteration, da stimmt was noch nicht ganz.
Code:
%% Punkt definieren
clc
% lat (Breite), lon (Länge)
p1 = [43.45; 8.54];


% Punkt 2 abschätzen

%% 3000 km nach Westen
distanz = 3000000;
richtung = [0; -1];

erdradius = 6378137;
m = 1 ./ (erdradius * [1; cos(p1(1) * pi/180)]);% lokale Ableitung
winkel = richtung * distanz .* m;
p2 = p1 + winkel * 180/pi;

% Grenzen prüfen
if (p2(1) > 90)
    p2(1) = 180 - p2(1); % Über den Pol drüber gekommen
    p2(2) = p2(2) + 180;
elseif(p2(1) < -90)
    p2(1) = -180 - p2(1); % Über den Pol drüber gekommen
    p2(2) = p2(2) + 180;
end
p2(2) = mod(p2(2) + 180, 360) - 180;
% Ergebnis der Schätzung
fprintf('Schätzung:\n');
disp(p2);
fprintf('\nFehler: %.2f Meter\n', abs(distanz - vdist(p1, p2)));


%% Näherung mit 4 Iterationen
for i=1:4
    fehler = richtung .* (distanz - vdist(p1, p2));
    m = 1 ./ (erdradius * [1; cos(p2(1) * pi/180)]);% lokale Ableitung
    w = fehler .* m;
    p2 = p2 + w * 180/pi;
   
    fprintf('\nFehler: %.3f Meter\n', abs(distanz - vdist(p1, p2)));
end
fprintf('Schätzung:\n');
disp(p2);
Gibt bei mir z.B. folgendes aus:
Zitat:
Schätzung:
43.45
-28.582

Fehler: 20591.00 Meter

Fehler: 499.968 Meter

Fehler: 12.233 Meter

Fehler: 0.299 Meter

Fehler: 0.007 Meter
Schätzung:
43.45
-28.843
Das ist jetzt noch ein wenig fehleranfällig (bes. wenn man über den Pol kommt) aber sollte das prinzip demonstrieren. vdist() ist eine Funktion, die die Distanz zwischen den Punkten berechnet.
  Mit Zitat antworten Zitat
 


Forumregeln

Es ist dir nicht erlaubt, neue Themen zu verfassen.
Es ist dir nicht erlaubt, auf Beiträge zu antworten.
Es ist dir nicht erlaubt, Anhänge hochzuladen.
Es ist dir nicht erlaubt, deine Beiträge zu bearbeiten.

BB-Code ist an.
Smileys sind an.
[IMG] Code ist an.
HTML-Code ist aus.
Trackbacks are an
Pingbacks are an
Refbacks are aus

Gehe zu:

Impressum · AGB · Datenschutz · Nach oben
Alle Zeitangaben in WEZ +1. Es ist jetzt 00:25 Uhr.
Powered by vBulletin® Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
LinkBacks Enabled by vBSEO © 2011, Crawlability, Inc.
Delphi-PRAXiS (c) 2002 - 2023 by Daniel R. Wolf, 2024-2025 by Thomas Breitkreuz