AGB  ·  Datenschutz  ·  Impressum  







Anmelden
Nützliche Links
Registrieren
Zurück Delphi-PRAXiS Sprachen und Entwicklungsumgebungen Object-Pascal / Delphi-Language Delphi MD5-128 bit Brute force moeglich? in einer woche?
Thema durchsuchen
Ansicht
Themen-Optionen

MD5-128 bit Brute force moeglich? in einer woche?

Ein Thema von richard_boderich · begonnen am 18. Feb 2005 · letzter Beitrag vom 11. Nov 2011
 
Benutzerbild von negaH
negaH

Registriert seit: 25. Jun 2003
Ort: Thüringen
2.950 Beiträge
 
#34

Re: MD5-128 bit Brute force moeglich? in einer woche?

  Alt 28. Feb 2006, 11:57
Anders ausgedrückt:

Es ist mathematisch hinfällig eine Hashfunktion zu Brute Forcen, denn es läuft immer darauf hinaus das man ein Inputset brute forcen muß indem man von jedem solchen Input den Hashdigest berechnet und diesen mit dem vorhandenen Digest vergleicht. Eine Hashfunktion ist quasi mathematisch ein "Durchlaufposten". Diese Betrachtungsweise gilt zumindestens so lange wie man einen ganz spezifischen Input 1 zu 1 finden möchte. Allerdings besteht eben das Problem eines realen Informationsverlustes wenn man zb. die Menge aller möglichen 1024 Bit Inputs auf diese Weise Brute Forcebn möchte. Denn 2^1024 mögliche Inputs können einfach nicht eineindeutig auf 2^128 mögliche Outputs gemappte werden. Es gehen dabei 896 Bits an Informationen verloren, ins Nirwana, sie lösen sich in Rauch auf.

D.h. sollte der gesuchte Input größer 128 Bits sein dann ist es mathematisch beweisbar das man ausgehend von einem 128 Bits Digest niemals exakt diesen Input reproduzieren kann. Je größer der Input wird desto mehr Kollisionen treten auf, um so mehr muß in der Differenzierung dieser Kollisionen auf igendwelche anderen Mittel zurückgegriffen werden um die fehlenden Informationen wieder herstellen zu können. Ist der Input theoretisch eine unendlich große Menge so wird dieser Informationsverlust auch unendlich groß sein, bzw. eben nur 2^128 mal kleiner als unendlich.


Praktisch gesehen heist das:

Will man mit einer 128 Bit Hashfunktion ein Passwort schützen so gilt:

1.) Passwort sollte 128 Bit groß sein
2.) ein Zufallssalt von 128 Bit sollte vor dem hashen hinzugefügt werden

Der Input zur Hashfunktion besteht also aus 256 Bits und wird durch diese auf 128 Bit Digest reduziert. Zu einem der 128 Bit Passwörter gibt es also 2^128 Möglichkeiten ein Salt zu erzeugen. Das bedeutet aus Sicht des Angreifers das die Wahrscheinlichkeit zwischen Salt und Passwort exakt 50% ist, er kann also nicht mehr differenzieren was er nach einer Brute Force Attacke vor sich hat: Passwort oder Salt, oder 50% Bits vom Passwort und 50% Bits vom Salt, oder 50% Bits von einem spezifischen aber falschen Salt und 50% Bits eines falschen Passwortes.

Jede weitere Vergrößerung vom Passwort oder eben Salt erhöht nun nur noch den Rechentechnischen Zeitaufwand aber nicht mehr die effektive Sicherheit. Will man also MEHR reale Sicherheit dann geht dies nur indem man eine größere Hashfunktion benutzt. Die Hashfunktion ist also ein "Durchlaufposten" dessen Bitgröße aber als "Flaschenhals" eine eventuell größere Sicherheit eines größeren Passwortes reduzieren kann aber real bei einem kürzeren Passwort niemals erhöhen kann (wo nichts ist kann eine Hashfunktion auch nichts sicherer machen). Die letzendliche Sicherheit definiert sich also immer wieder aus dem Passwort. Die Hashfunktion könnte nur unter Umständen die Sicherheit negativ beeinflussen wenn sie kürzer als das Passwort ist.


Gruß Hagen
  Mit Zitat antworten Zitat
 


Forumregeln

Es ist dir nicht erlaubt, neue Themen zu verfassen.
Es ist dir nicht erlaubt, auf Beiträge zu antworten.
Es ist dir nicht erlaubt, Anhänge hochzuladen.
Es ist dir nicht erlaubt, deine Beiträge zu bearbeiten.

BB-Code ist an.
Smileys sind an.
[IMG] Code ist an.
HTML-Code ist aus.
Trackbacks are an
Pingbacks are an
Refbacks are aus

Gehe zu:

Impressum · AGB · Datenschutz · Nach oben
Alle Zeitangaben in WEZ +1. Es ist jetzt 04:06 Uhr.
Powered by vBulletin® Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
LinkBacks Enabled by vBSEO © 2011, Crawlability, Inc.
Delphi-PRAXiS (c) 2002 - 2023 by Daniel R. Wolf, 2024-2025 by Thomas Breitkreuz