AGB  ·  Datenschutz  ·  Impressum  







Anmelden
Nützliche Links
Registrieren
Zurück Delphi-PRAXiS Sprachen und Entwicklungsumgebungen Sonstige Fragen zu Delphi Delphi RSA: Privaten Schlüssel schneller berechnen
Thema durchsuchen
Ansicht
Themen-Optionen

RSA: Privaten Schlüssel schneller berechnen

Ein Thema von WIN-MANww · begonnen am 1. Jun 2006 · letzter Beitrag vom 17. Sep 2012
Antwort Antwort
Micha88
(Gast)

n/a Beiträge
 
#1

AW: RSA: Privaten Schlüssel schneller berechnen

  Alt 11. Nov 2011, 00:07
Ich bekomme es fast kompiliert.

Nur findet er InversMod() nicht.
Gibt es dazu einen Code? Möchte nur ungern eine komplette Komponente nur für eine Funktion installieren.
  Mit Zitat antworten Zitat
Bjoerk

Registriert seit: 28. Feb 2011
Ort: Mannheim
1.384 Beiträge
 
Delphi 10.4 Sydney
 
#2

AW: RSA: Privaten Schlüssel schneller berechnen

  Alt 11. Nov 2011, 00:37
Delphi-Quellcode:
function GreatestCommonDivisorAdvanced
  (A, B: int64; var U, V: int64): int64;
var
  U0, V0: int64;
begin
  if B = 0 then
  begin
    Result:= A;
    U:= 1;
    V:= 0;
  end
  else
  begin
    Result:= GreatestCommonDivisorAdvanced(B, A mod B, U0, V0);
    U:= V0;
    V:= U0-(A div B)*V0;
  end;
end;

function InversMod(A, B: int64): int64;
var
  V: int64;
begin
  GreatestCommonDivisorAdvanced(A, B, Result, V);
  if Result < 0 then Result:= Result+B;
end;
  Mit Zitat antworten Zitat
Micha88
(Gast)

n/a Beiträge
 
#3

AW: RSA: Privaten Schlüssel schneller berechnen

  Alt 11. Nov 2011, 12:16
Vielen Dank für diese Beschreibung, Hagen. Sehr gut verständlich.


Also funktionieren tut das alles nicht so recht.

Delphi-Quellcode:
uses IsPrimeHRUnit {DEC 5.2}
// ...

var FE, FD, FN, FM, FP, FQ: Int64;

function GreatestCommonDivisor(a, b: Int64): Int64;
VAR
 r: INTEGER;
begin
 if b = 0 then
  begin
   result := 0;
   exit;
  end;

 while b > 0 do
  begin
   r := a mod b;
   a := b;
   b := r;
  end;

 result := a;
end;

function InversMod(a, b: Int64): Int64;
var
 V: Int64;
begin
 V := GreatestCommonDivisor(a, b);
 if result < 0 then
  result := result + b;
end;

procedure FindD(const N, E: Int64); // get the private Key D
var
 P, Q, M: Int64;
begin
 FE := 0;
 FD := 0;
 FN := 0;
 FM := 0;
 FP := 0;
 FQ := 0;
 P := 2;
 while P < N do
  begin
   if IsPrime(P) then
    begin
     Q := N div P;
     if IsPrime(Q) then
      begin
       if P * Q = N then
        begin
         M := (P - 1) * (Q - 1);
         if GreatestCommonDivisor(M, E) = 1 then
          begin
           FD := InversMod(E, M);
           FE := E;
           FN := N;
           FM := M;
           FP := P;
           FQ := Q;
           Break;
          end;
        end;
      end;
    end;
   P := P + 1;
  end;
end;

procedure TForm1.Button1Click(Sender: TObject);
begin
 FindD(StrToInt(Edit1.Text), StrToInt(Edit2.Text));

 // Alles ist '0'
 Label3.Caption := IntToStr(FE);
 Label4.Caption := IntToStr(FN);
 Label5.Caption := IntToStr(FM);
 Label6.Caption := IntToStr(FQ);
end;

Geändert von Micha88 (11. Nov 2011 um 12:21 Uhr)
  Mit Zitat antworten Zitat
gammatester

Registriert seit: 6. Dez 2005
999 Beiträge
 
#4

AW: RSA: Privaten Schlüssel schneller berechnen

  Alt 11. Nov 2011, 12:29
Also funktionieren tut das alles nicht so recht.
Wie soll's es auch, wenn Du planlos einen normalen GGT statt eines erweiterten GGT zur Berechnung des modularen Inversen einsetzt. Versuchs mal mit Bjoerks GreatestCommonDivisorAdvanced.
  Mit Zitat antworten Zitat
Bjoerk

Registriert seit: 28. Feb 2011
Ort: Mannheim
1.384 Beiträge
 
Delphi 10.4 Sydney
 
#5

AW: RSA: Privaten Schlüssel schneller berechnen

  Alt 11. Nov 2011, 12:38
Vielen Dank für diese Beschreibung, Hagen. Sehr gut verständlich.


Also funktionieren tut das alles nicht so recht.

Delphi-Quellcode:
uses IsPrimeHRUnit {DEC 5.2}
// ...

var FE, FD, FN, FM, FP, FQ: Int64;

function GreatestCommonDivisor(a, b: Int64): Int64;
VAR
 r: INTEGER;
begin
 if b = 0 then
  begin
   result := 0;
   exit;
  end;

 while b > 0 do
  begin
   r := a mod b;
   a := b;
   b := r;
  end;

 result := a;
end;

function InversMod(a, b: Int64): Int64;
var
 V: Int64;
begin
 V := GreatestCommonDivisor(a, b);
 if result < 0 then
  result := result + b;
end;

procedure FindD(const N, E: Int64); // get the private Key D
var
 P, Q, M: Int64;
begin
 FE := 0;
 FD := 0;
 FN := 0;
 FM := 0;
 FP := 0;
 FQ := 0;
 P := 2;
 while P < N do
  begin
   if IsPrime(P) then
    begin
     Q := N div P;
     if IsPrime(Q) then
      begin
       if P * Q = N then
        begin
         M := (P - 1) * (Q - 1);
         if GreatestCommonDivisor(M, E) = 1 then
          begin
           FD := InversMod(E, M);
           FE := E;
           FN := N;
           FM := M;
           FP := P;
           FQ := Q;
           Break;
          end;
        end;
      end;
    end;
   P := P + 1;
  end;
end;

procedure TForm1.Button1Click(Sender: TObject);
begin
 FindD(StrToInt(Edit1.Text), StrToInt(Edit2.Text));

 // Alles ist '0'
 Label3.Caption := IntToStr(FE);
 Label4.Caption := IntToStr(FN);
 Label5.Caption := IntToStr(FM);
 Label6.Caption := IntToStr(FQ);
end;
Also, Copy and Paste Fähigkeiten hab' ich jetzt einfach mal vorausgesetzt...

Edit: Die while Schleife braucht übrigens nur bis <= N div 2 zu laufen

Geändert von Bjoerk (11. Nov 2011 um 12:49 Uhr) Grund: Edit
  Mit Zitat antworten Zitat
Micha88
(Gast)

n/a Beiträge
 
#6

AW: RSA: Privaten Schlüssel schneller berechnen

  Alt 11. Nov 2011, 13:04
Was bringt mir denn aber FE, FN, FM und FQ. Wie berechnet man daraus den Private Key?

Geändert von Micha88 (11. Nov 2011 um 13:08 Uhr)
  Mit Zitat antworten Zitat
gammatester

Registriert seit: 6. Dez 2005
999 Beiträge
 
#7

AW: RSA: Privaten Schlüssel schneller berechnen

  Alt 11. Nov 2011, 13:24
Was bringt mir denn aber FE, FN, FM und FQ. Wie berechnet man daraus den Private Key?
Das steht doch da:
Delphi-Quellcode:
  FD := InversMod(E, M);
  FN := N;
Das Paar (N,D) bzw. (FN,FD) ist der private Schlüssel! Vielleicht solltest Du Dich mal mit den Grundlagen vertraut machen.
  Mit Zitat antworten Zitat
Bjoerk

Registriert seit: 28. Feb 2011
Ort: Mannheim
1.384 Beiträge
 
Delphi 10.4 Sydney
 
#8

AW: RSA: Privaten Schlüssel schneller berechnen

  Alt 11. Nov 2011, 14:49
Was auch ganz interessant ist, daß P und Q nicht unbedingt Primzahlen sein müssen. Dann muß man aber vorher auf Plausibilität prüfen, d.h. für alle zu verschlüsselnden I muß die Bedingung I = Decrypt(Encrypt(I)) erfüllt sein.

P: 190
Q: 129
N : 24510
M: 24192
E: 14417
D: 11825

Für I im Bereich 1..255 getestet.
  Mit Zitat antworten Zitat
Antwort Antwort


Forumregeln

Es ist dir nicht erlaubt, neue Themen zu verfassen.
Es ist dir nicht erlaubt, auf Beiträge zu antworten.
Es ist dir nicht erlaubt, Anhänge hochzuladen.
Es ist dir nicht erlaubt, deine Beiträge zu bearbeiten.

BB-Code ist an.
Smileys sind an.
[IMG] Code ist an.
HTML-Code ist aus.
Trackbacks are an
Pingbacks are an
Refbacks are aus

Gehe zu:

Impressum · AGB · Datenschutz · Nach oben
Alle Zeitangaben in WEZ +1. Es ist jetzt 12:51 Uhr.
Powered by vBulletin® Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
LinkBacks Enabled by vBSEO © 2011, Crawlability, Inc.
Delphi-PRAXiS (c) 2002 - 2023 by Daniel R. Wolf, 2024-2025 by Thomas Breitkreuz