AGB  ·  Datenschutz  ·  Impressum  







Anmelden
Nützliche Links
Registrieren
Zurück Delphi-PRAXiS Sprachen und Entwicklungsumgebungen Sonstige Fragen zu Delphi Delphi RSA: Privaten Schlüssel schneller berechnen
Thema durchsuchen
Ansicht
Themen-Optionen

RSA: Privaten Schlüssel schneller berechnen

Ein Thema von WIN-MANww · begonnen am 1. Jun 2006 · letzter Beitrag vom 17. Sep 2012
 
Benutzerbild von negaH
negaH

Registriert seit: 25. Jun 2003
Ort: Thüringen
2.950 Beiträge
 
#7

Re: RSA: Privaten Schlüssel schneller berechnen

  Alt 2. Jun 2006, 00:32
Code:
  repeat
    repeat
      P = RandomPrime()                      // Primzahl P erzeugen
      Q = RandomPrime()                      // Primzahl Q erzeugen
      N = P * Q                              // Public Modul N erzeugen
      E = Random() mod (2^(Ln2(Ln2(N)) * 4)) // public Exponent erzeugen, sollt BitSize(BitSize(N))*4
                                              // Bits groß sein BitSize(N) = Ln2(N)
    until GCD(E, N) = 1                       // E muß teilerfremd zu N = P*Q und somit auch P und Q sein
 
    Phi = LCM(P -1, Q -1)                    // Phi(N) = LCM(P -1, Q -1),
                                              //   das geht weil wir wissen das N in P,Q faktorisierbar ist
   
  until (ExtGCD(D, T, E, Phi) == 1) and      // D = E^-1 mod Phi(N), Decryption Exponent erzeugen
        (D > E) and                          // D muß größer E sein
        (GCD(D, N) = 1)                      // D muß teilerfremd zu N sein, und somit auch zu P und Q
R = ExtGCD(var U,V; const A,B) ist definiert als R = U*A + V*B

und nachfolgend mal eine RSA Schlüsselerzeugung als praktischer Source in meinem DECMath

Delphi-Quellcode:
procedure RSA;
// RSA 1024 Bit verschlüsselung
var
  P,Q: IInteger; // primzahlen
  N: IInteger;    // modulus
  E,D: IInteger; // public/private exponent
  U,Dp,Dq: IInteger; // private values to speedup decryption by factor 4
  M,C: IInteger; // Plaintext/Ciphertext
  X,Y: IInteger; // helper
begin
  repeat
  // erzeuge 512 Bit Primzahl P
    NRnd(P, 512);
    NBit(P, 512 -2, True); // setze 2'höchstes Bit in P um sicherzustellen das P*Q ein 1024 Bit N erzeugen
    NMakePrime(P, [1, 2]);
  // erzeuge 512 Bit Primzahl Q
    repeat
      NRnd(Q, 512);
      NBit(Q, 512 -2, True);
      NMakePrime(Q, [1, 2]);
    until NCmp(P, Q) <> 0; // verhindere unwahrscheinlichen Fall das P gleich Q ist
    if NCmp(P, Q) < 0 then NSwp(P, Q);   // make sure P > Q
  // erzeuge public Modul N = 1024 Bit, N = P * Q
    NMul(N, P, Q);
  until NSize(N) = 1024; // verhindere unwahrscheinlichen Fall das N nicht wie gewünscht 1024 Bit groß ist

// erzeuge sicheren public Exponenten E, private Exponenten D zur entschlüsselung
  NDec(P);
  NDec(Q);
  NLCM(U, P, Q); // U = LCM(P -1, Q -1)
  repeat
    repeat
      NRnd(E, NLog2(NSize(N)) * 4); // Exponent sollte 4*Log2(Log2(N)) groß sein, zufällig und ungerade
      NOdd(E, True);
    until NGCD1(E, P) and NGCD1(E, Q); // Exponent darf keinen gemeinsammen Teiler mit P oder Q haben, sprich nicht durch P,Q teilbar sein
 // erzeuge private Entschlüsselungsexponent D, D sollte >= E sein und keinen gemeinsammen Teiler mit N haben
  until NInvMod(D, E, U) and (NSize(D) >= NSize(E)) and NGCD1(D, N);

  NMod(Dp, D, P); // Dp = D mod (P -1), wird benötigt für Chinese Remainder Theorem CRT
  NMod(Dq, D, Q); // Dq = Q mod (Q -1)
  NInc(P);
  NInc(Q);
  NInvMod(U, P, Q); // U = P^-1 mod Q
// unser privater und öffentlicher Schlüssel sind nun fertig
// N,E ist der öffentliche Schlüssel
// N,D der private Schlüssel, wobei
// U,Dp,Dq,P,Q dazu gehören damit wir die Entschlüsselung um Faktor 4 beschleunigen können


// nun verschlüsseln wir M den PlainText
  NSet(M, 'Unser Geheimnis', 256);
  NCut(M, NHigh(N));       // M muß kleiner public Modul N sein
// CipherText C = M^E mod N
  NPowMod(C, M, E, N);       // C = M^E mod N

  Write(#21);
  WriteLn(#2'PlainText   : '#0, NStr(M, 16), ' = ', NStr(M, 256) );
  WriteLn(#3'CipherText : '#0, NStr(C, 16) );
  Write(#20#0);

// nun entschlüsseln wir auf herkömmliche Art,
//    X = M = C^D mod N
  WriteLn(#2'normal entschlüsselt'#0#30);

  NPowMod(X, C, D, N);

  WriteLn( NStr(X, 256) );

// nun die schnelle Variante per CRT = Chinese Remainder Theorem ca. 4 mal schneller
  WriteLn(#10#2'per CRT entschlüsselt: '#0#30);

  NPowMod(X, C, Dp, P);
  NPowMod(Y, C, Dq, Q);
  NSub(Y, X);
  NMulMod(Y, U, Q);
  NMul(Y, P);
  NAdd(Y, X);

  WriteLn( NStr(Y, 256), ' = ', NStr(Y, 16));

// oder
  WriteLn(#30);
  NPowMod(X, C, Dp, P);
  NPowMod(Y, C, Dq, Q);
  NCRT(Y, NInt([X, Y]), NInt([Dp, Dq]), NInt([U]));
  WriteLn( NStr(Y, 256) );
end;
NInvMod(var R, const A, const M) = modulares Inverses ist definiert als ExtGCD(var R, var Dummy, const A, const M).
NInvMod() ist damit nur eine spezialisierte Funktion des erweiterten ggT() -> extended GCD().


Gruß Hagen
  Mit Zitat antworten Zitat
 


Forumregeln

Es ist dir nicht erlaubt, neue Themen zu verfassen.
Es ist dir nicht erlaubt, auf Beiträge zu antworten.
Es ist dir nicht erlaubt, Anhänge hochzuladen.
Es ist dir nicht erlaubt, deine Beiträge zu bearbeiten.

BB-Code ist an.
Smileys sind an.
[IMG] Code ist an.
HTML-Code ist aus.
Trackbacks are an
Pingbacks are an
Refbacks are aus

Gehe zu:

Impressum · AGB · Datenschutz · Nach oben
Alle Zeitangaben in WEZ +1. Es ist jetzt 04:58 Uhr.
Powered by vBulletin® Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
LinkBacks Enabled by vBSEO © 2011, Crawlability, Inc.
Delphi-PRAXiS (c) 2002 - 2023 by Daniel R. Wolf, 2024-2025 by Thomas Breitkreuz