AGB  ·  Datenschutz  ·  Impressum  







Anmelden
Nützliche Links
Registrieren
Thema durchsuchen
Ansicht
Themen-Optionen

Gauß-Verfahren - Matrix lösen

Ein Thema von Danny92 · begonnen am 29. Aug 2015 · letzter Beitrag vom 1. Sep 2015
Antwort Antwort
Namenloser

Registriert seit: 7. Jun 2006
Ort: Karlsruhe
3.724 Beiträge
 
FreePascal / Lazarus
 
#1

AW: Gauß-Verfahren - Matrix lösen

  Alt 29. Aug 2015, 10:02
Es ist eigentlich üblich, bei der Lösung von Gleichungssystemen mit Gleitkommazahlen zu arbeiten. Es gibt bestimmte Verfahren, um Rundungsfehler zu minimieren (beispielsweise QR-Zerlegung). Weshalb brauchst du Ganzzahlen? Du hast es begründet mit GGT und KGV, aber ich finde das in deinem Code nur im Zusammenhang mit den Bruch-Berechnungen. Die bräuchtest du mit Gleitkommazahlen ja gar nicht mehr. Was soll am Ende wirklich berechnet werden?
  Mit Zitat antworten Zitat
Benutzerbild von frankyboy1974
frankyboy1974

Registriert seit: 7. Apr 2015
Ort: SH
169 Beiträge
 
Delphi XE7 Professional
 
#2

AW: Gauß-Verfahren - Matrix lösen

  Alt 29. Aug 2015, 10:16
Hallo,

ich würde das Problem auch in Abbildung des Gauß-Verfahrens sehen. Wenn ich dir jetzt als Beispiel das LGS 2,59X+ 7,657Y= 874584 und 4,55X + 18,456Y=44837 gebe, sucht du jetzt den kgVF von 2,59 und 4,55, nur um das LGS zu lösen?

mfg

frank
Java ist auch eine Insel.
Ist Delphi von Oracle?
In meiner Buchstabensuppen fehlt das C++!
  Mit Zitat antworten Zitat
Antwort Antwort

 

Forumregeln

Es ist dir nicht erlaubt, neue Themen zu verfassen.
Es ist dir nicht erlaubt, auf Beiträge zu antworten.
Es ist dir nicht erlaubt, Anhänge hochzuladen.
Es ist dir nicht erlaubt, deine Beiträge zu bearbeiten.

BB-Code ist an.
Smileys sind an.
[IMG] Code ist an.
HTML-Code ist aus.
Trackbacks are an
Pingbacks are an
Refbacks are aus

Gehe zu:

Impressum · AGB · Datenschutz · Nach oben
Alle Zeitangaben in WEZ +1. Es ist jetzt 17:01 Uhr.
Powered by vBulletin® Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
LinkBacks Enabled by vBSEO © 2011, Crawlability, Inc.
Delphi-PRAXiS (c) 2002 - 2023 by Daniel R. Wolf, 2024-2025 by Thomas Breitkreuz