AGB  ·  Datenschutz  ·  Impressum  







Anmelden
Nützliche Links
Registrieren
Thema durchsuchen
Ansicht
Themen-Optionen

Monte Carlo trifft PI

Ein Thema von Delphi-Padawan · begonnen am 21. Jan 2005 · letzter Beitrag vom 24. Jan 2005
 
Nicolai1234

Registriert seit: 21. Feb 2004
1.008 Beiträge
 
Turbo Delphi für Win32
 
#10

Re: Monte Carlo trifft PI

  Alt 24. Jan 2005, 13:31
Ich habe mal eine Frage zum Verständnis. Das ganze mit Canvas zu machen bringt doch rein garnichts oder?
Wenn ich so ein Viertelkreis habe, dann könnte ich doch auch gleich die Pixel auszählen, um zu gucken, wie groß Pi unefähr ist, oder? Das wäre zwar nicht sehr genau, aber es käme auf dauer doch das gleiche raus wie bei der Monte Carlo Methode.
Sehe ich da was falsch?
Beispiel:
Das obige Bild hat 71x71 Pixel. Das sind dann insgesamt 5041 Pixel.
Davon liegen 1605 Pixel außerhalb des Kreises und 3436 Pixel innerhalb. Dann käme ich auf ein Pi von ungefähr 3,1408.
Das Ergebnis wird doch fast genauso bleiben, wenn ich da jetzt ein paar Punkte zufällig raufmale, oder?

Das heißt (denk ich mal) dass man eine so große Fläche bräuchte, die mit einem Canvas nicht mehr zu bewältigen ist. Aber auch sp ist doch der Effekt mit den Pixelzählen immer schneller ung genauer als ein paar zufällige Punkte...

Naja, vielleicht kann mich ja einer eines Besseren belehren...
Gruß
Nicolai

Geändert von Nicolai1234 (14. Feb 2015 um 20:33 Uhr)
  Mit Zitat antworten Zitat
 


Forumregeln

Es ist dir nicht erlaubt, neue Themen zu verfassen.
Es ist dir nicht erlaubt, auf Beiträge zu antworten.
Es ist dir nicht erlaubt, Anhänge hochzuladen.
Es ist dir nicht erlaubt, deine Beiträge zu bearbeiten.

BB-Code ist an.
Smileys sind an.
[IMG] Code ist an.
HTML-Code ist aus.
Trackbacks are an
Pingbacks are an
Refbacks are aus

Gehe zu:

Impressum · AGB · Datenschutz · Nach oben
Alle Zeitangaben in WEZ +1. Es ist jetzt 18:04 Uhr.
Powered by vBulletin® Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
LinkBacks Enabled by vBSEO © 2011, Crawlability, Inc.
Delphi-PRAXiS (c) 2002 - 2023 by Daniel R. Wolf, 2024-2025 by Thomas Breitkreuz