AGB  ·  Datenschutz  ·  Impressum  







Anmelden
Nützliche Links
Registrieren
Zurück Delphi-PRAXiS Programmierung allgemein Programmieren allgemein Gleitpunktarithmetik - Diskrepanzen
Thema durchsuchen
Ansicht
Themen-Optionen

Gleitpunktarithmetik - Diskrepanzen

Ein Thema von mumu · begonnen am 18. Dez 2005 · letzter Beitrag vom 20. Dez 2005
 
Benutzerbild von dizzy
dizzy

Registriert seit: 26. Nov 2003
Ort: Lünen
1.932 Beiträge
 
Delphi 7 Enterprise
 
#14

Re: Gleitpunktarithmetik - Diskrepanzen

  Alt 19. Dez 2005, 16:54
Das Ergebnis ist sicher nicht x 8)

Ich habe hier schon mal 0.2 binär dargestellt, und es wurde periodisch. Unter der Annahme dass eine halbierte periodische Zahl weiterhin periodisch ist, würde dies auch auf 0.1d zutreffen. Dadurch passt die Mantisse nicht in die dafür vorhandenen Bits (müssten ja unendlich viele sein ), und schon allein das hinterlegen des Wertes "0.1" in der FPU erzeugt eine Ungenauigkeit. Diese summiert sich auf, und wird aber nicht in gleicher Weise wieder abgezogen in der 2. Schleife! Ungenauigkeiten bei Floats haben so die Eigenschaft mit jeder weiteren Rechnung immer schlimmer zu werden als besser
Folglich wird das Ergebnis nachher x+-e heissen, wobei e eine beliebige kleine (nicht beliebig kleine! ) reelle Zahl ist, wenn nur ausreichend Zwischenschritte ausgeführt werden.
Fabian K.
INSERT INTO HandVonFreundin SELECT * FROM Himmel
  Mit Zitat antworten Zitat
 


Forumregeln

Es ist dir nicht erlaubt, neue Themen zu verfassen.
Es ist dir nicht erlaubt, auf Beiträge zu antworten.
Es ist dir nicht erlaubt, Anhänge hochzuladen.
Es ist dir nicht erlaubt, deine Beiträge zu bearbeiten.

BB-Code ist an.
Smileys sind an.
[IMG] Code ist an.
HTML-Code ist aus.
Trackbacks are an
Pingbacks are an
Refbacks are aus

Gehe zu:

Impressum · AGB · Datenschutz · Nach oben
Alle Zeitangaben in WEZ +1. Es ist jetzt 10:42 Uhr.
Powered by vBulletin® Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
LinkBacks Enabled by vBSEO © 2011, Crawlability, Inc.
Delphi-PRAXiS (c) 2002 - 2023 by Daniel R. Wolf, 2024-2025 by Thomas Breitkreuz