AGB  ·  Datenschutz  ·  Impressum  







Anmelden
Nützliche Links
Registrieren
Zurück Delphi-PRAXiS Sprachen und Entwicklungsumgebungen Object-Pascal / Delphi-Language Erstellung einer Schleife mit drei Überprüfungen
Thema durchsuchen
Ansicht
Themen-Optionen

Erstellung einer Schleife mit drei Überprüfungen

Ein Thema von Mo53 · begonnen am 22. Mai 2021 · letzter Beitrag vom 24. Mai 2021
Antwort Antwort
Delphi.Narium

Registriert seit: 27. Nov 2017
2.599 Beiträge
 
Delphi 7 Professional
 
#1

AW: Erstellung einer Schleife mit drei Überprüfungen

  Alt 24. Mai 2021, 11:08
Irgendwie konnte ich es nicht lassen:

Da es ja vorwiegend um die korrekte Nutzung von Schleifen gehen soll und die Verwendung einer For-, eine Repeat-Until und einer While-Schleife gefordert ist, dachte ich mir. "Die Fibonacci-Folge kann man doch auch per Schleife berechnen (statt durch 'hötere Mattetik'."

Dabei rausgekommen ist dann folgendes:
Delphi-Quellcode:
program ueb04;

{$APPTYPE CONSOLE}
{$R+,Q+,X-}

uses
  System.SysUtils;

const
  LOWER_BORDER = 0;
  UPPER_BORDER = 50;

var
  even : boolean;
  fib : boolean;
  twinprim : boolean;
  zahl : integer;
  Primzahl : integer;
  teiler : integer;
  uebrig : Integer;
  a : Integer;
  b : Integer;
  c : Integer;
begin
  for zahl := LOWER_BORDER to UPPER_BORDER do
  begin
    // Alles auf Anfang, damit nicht irrtümlicherweise die Ergebnisse der vorherigen Zahl genutzt werden.
    even := false;
    fib := false;
    twinprim := false;

    if zahl > 1 then
    begin
      // Überprüfung ob gerade:
      even := (zahl mod 2 = 0);

      // Überprüfung ob Primzahl:
      teiler := 1;
      repeat
        teiler := teiler + 1;
        uebrig := zahl mod teiler;
      until (uebrig = 0);

      if (teiler = zahl) then
        Primzahl := zahl;
    end;

    // Überprüfung ob Primzahlzwilling:
    if zahl >= 1 then
      twinprim := (zahl + 2 = Primzahl) or (zahl - 2 = Primzahl);

    // Überprüfung ob Teil der Fibonacci-Folge:
    a := 0;
    b := 1;
    c := 0;
    while (a < zahl) and not fib do
    begin
       c := a + b;
       a := b;
       b := c;
       fib := c = zahl;
    end;
    WriteLn(zahl, ' even: ', even, ' fib: ', fib, 'twinprim: ', twinprim);
  end;
  readln;
end.
Das Ergebnis sieht so aus:
Code:
00, even: false, fib: false, twinprim: false
01, even: false, fib: true, twinprim: false
02, even: true, fib: true, twinprim: false
03, even: false, fib: true, twinprim: false
04, even: true, fib: false, twinprim: false
05, even: false, fib: true, twinprim: false
06, even: true, fib: false, twinprim: false
07, even: false, fib: false, twinprim: false
08, even: true, fib: true, twinprim: false
09, even: false, fib: false, twinprim: true
10, even: true, fib: false, twinprim: false
11, even: false, fib: false, twinprim: false
12, even: true, fib: false, twinprim: false
13, even: false, fib: true, twinprim: false
14, even: true, fib: false, twinprim: false
15, even: false, fib: false, twinprim: true
16, even: true, fib: false, twinprim: false
17, even: false, fib: false, twinprim: false
18, even: true, fib: false, twinprim: false
19, even: false, fib: false, twinprim: false
20, even: true, fib: false, twinprim: false
21, even: false, fib: true, twinprim: true
22, even: true, fib: false, twinprim: false
23, even: false, fib: false, twinprim: false
24, even: true, fib: false, twinprim: false
25, even: false, fib: false, twinprim: true
26, even: true, fib: false, twinprim: false
27, even: false, fib: false, twinprim: false
28, even: true, fib: false, twinprim: false
29, even: false, fib: false, twinprim: false
30, even: true, fib: false, twinprim: false
31, even: false, fib: false, twinprim: false
32, even: true, fib: false, twinprim: false
33, even: false, fib: false, twinprim: true
34, even: true, fib: true, twinprim: false
35, even: false, fib: false, twinprim: false
36, even: true, fib: false, twinprim: false
37, even: false, fib: false, twinprim: false
38, even: true, fib: false, twinprim: false
39, even: false, fib: false, twinprim: true
40, even: true, fib: false, twinprim: false
41, even: false, fib: false, twinprim: false
42, even: true, fib: false, twinprim: false
43, even: false, fib: false, twinprim: false
44, even: true, fib: false, twinprim: false
45, even: false, fib: false, twinprim: true
46, even: true, fib: false, twinprim: false
47, even: false, fib: false, twinprim: false
48, even: true, fib: false, twinprim: false
49, even: false, fib: false, twinprim: true
50, even: true, fib: false, twinprim: false
  Mit Zitat antworten Zitat
Michael II

Registriert seit: 1. Dez 2012
Ort: CH BE Eriswil
778 Beiträge
 
Delphi 11 Alexandria
 
#2

AW: Erstellung einer Schleife mit drei Überprüfungen

  Alt 24. Mai 2021, 11:30
Irgendwie konnte ich es nicht lassen:
Die Fibonacci-Folge kann man doch auch per Schleife berechnen
Ich finde den in #1 gewählten Fibo-Ansatz via MB auch steil. U.a. auch weil für den "berechneten Index" noch gecheckt werden muss, ob's effektiv ein Fibo-Index ist... aber da in #1 auch das schöne Epsilon erwähnt wurde, dachte ich, es MUSS so gelöst werden. Das Epsilon kannst du ja bei Primzahlen schlecht verwenden .
Hausaufgabe erledigt - mo53 und wir alle können die Sonne geniessen! In weniger als einem Monat werden die Tage für uns "NordhalbkugelerInnen" bereits wieder kürzer.


Wobei auch in #13 die Primzahlzwilling Berechnung immer noch sehr abenteuerlich ist .
Zwillinge (3,5), (5,7), (11,13) werden nicht erkannt. Haufenweise Zahlen - wie zum Beispiel 21 mit Primfaktorzerlegung 3*7 - sollen Primzahlzwillinge sein und sind nicht mal prim.
Michael Gasser

Geändert von Michael II (24. Mai 2021 um 11:55 Uhr)
  Mit Zitat antworten Zitat
Antwort Antwort


Forumregeln

Es ist dir nicht erlaubt, neue Themen zu verfassen.
Es ist dir nicht erlaubt, auf Beiträge zu antworten.
Es ist dir nicht erlaubt, Anhänge hochzuladen.
Es ist dir nicht erlaubt, deine Beiträge zu bearbeiten.

BB-Code ist an.
Smileys sind an.
[IMG] Code ist an.
HTML-Code ist aus.
Trackbacks are an
Pingbacks are an
Refbacks are aus

Gehe zu:

Impressum · AGB · Datenschutz · Nach oben
Alle Zeitangaben in WEZ +1. Es ist jetzt 14:52 Uhr.
Powered by vBulletin® Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
LinkBacks Enabled by vBSEO © 2011, Crawlability, Inc.
Delphi-PRAXiS (c) 2002 - 2023 by Daniel R. Wolf, 2024-2025 by Thomas Breitkreuz