AGB  ·  Datenschutz  ·  Impressum  







Anmelden
Nützliche Links
Registrieren
Zurück Delphi-PRAXiS Programmierung allgemein Programmieren allgemein Primzahl-Check: Javascript > Delphi
Thema durchsuchen
Ansicht
Themen-Optionen

Primzahl-Check: Javascript > Delphi

Ein Thema von zecke · begonnen am 7. Sep 2005 · letzter Beitrag vom 24. Mär 2006
 
Benutzerbild von negaH
negaH

Registriert seit: 25. Jun 2003
Ort: Thüringen
2.950 Beiträge
 
#26

Re: Primzahl-Check: Javascript > Delphi

  Alt 8. Sep 2005, 21:43
Zitat:
Da hat Montogomery wohl einen Trick gefunden, sehe ich das richtig?
Nicht für die Exponentation ansich. Im obigen Link zum Fastcode Projekt findest du verschiedene Verfahren. In meiner Unit wurde diese Exponentation einerseits mit normalen Division, also in der Normal Domain, und andererseits in der Montgomery Domain implementiert.

Man kann also die modulare Exponentation durchaus mit normalen Zahlen umsetzen und benötigt dazu nicht zwangsweise den Montgomery Trick. Der Trick ansich ändert nur die Zahlendarstellung auf eine Art & Weise das die wiederholt nötigen modularen Redukationen nach den modularen Multiplikationen eben nicht per Divisionen sondern mit Multiplkationen durchgeführt werden können. Da nun Multiplikationen auf Intel CPU's weitaus schneller sind ist diese Vorgehensweise sinnvoll.

Essentiell benutze ich zb. den Montgomery Trick in meiner Large Integer Library mit Integern bis zu 2^4096. Alles was darüber ist ist dann mit der schnellen Karatsuba Division nach Burnikel&Ziegler wieder wesentlich Performanter.

Mein erster Source den ich vor ca. 10 Jahren schrieb nutzt eben nicht die Montgomery Domain. Erst vor 2 Jahren, in der FastCode Competition, habe ich meinen IsPrime() Algo. auf Montgomery umgesetellt. Dies wurde sozusagen nötig da meine Competior meinen ursprüglichen Code durch Detailverbesserungen immer schneller machten. Eine weitere Beschleinigung des Verfahrens war also nur noch möglich indem ich neben dem Montgomery Trick die Trial Division ins Rennen warf und später diese Trial Division mit den modularen Inversen + Multiplikationen ausbaute

Sogesehen: der obige Source konnte nur entstehen weil sich verschiedene Leute in der FastCode Competition gegenseitig motivierten.

Gruß Hagen
  Mit Zitat antworten Zitat
 


Forumregeln

Es ist dir nicht erlaubt, neue Themen zu verfassen.
Es ist dir nicht erlaubt, auf Beiträge zu antworten.
Es ist dir nicht erlaubt, Anhänge hochzuladen.
Es ist dir nicht erlaubt, deine Beiträge zu bearbeiten.

BB-Code ist an.
Smileys sind an.
[IMG] Code ist an.
HTML-Code ist aus.
Trackbacks are an
Pingbacks are an
Refbacks are aus

Gehe zu:

Impressum · AGB · Datenschutz · Nach oben
Alle Zeitangaben in WEZ +1. Es ist jetzt 18:49 Uhr.
Powered by vBulletin® Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
LinkBacks Enabled by vBSEO © 2011, Crawlability, Inc.
Delphi-PRAXiS (c) 2002 - 2023 by Daniel R. Wolf, 2024-2025 by Thomas Breitkreuz