AGB  ·  Datenschutz  ·  Impressum  







Anmelden
Nützliche Links
Registrieren
Zurück Delphi-PRAXiS Sprachen und Entwicklungsumgebungen Sonstige Fragen zu Delphi Delphi Wie kann ich mir den schnittp. zweier lin. funk. berechnen
Thema durchsuchen
Ansicht
Themen-Optionen

Wie kann ich mir den schnittp. zweier lin. funk. berechnen

Ein Thema von NikoMitDaMacht · begonnen am 7. Dez 2005 · letzter Beitrag vom 8. Dez 2005
Antwort Antwort
Benutzerbild von Surrounder
Surrounder

Registriert seit: 26. Sep 2003
Ort: Stuttgart
177 Beiträge
 
Delphi 2006 Professional
 
#1

Re: Wie kann ich mir den schnittp. zweier lin. funk. berechn

  Alt 7. Dez 2005, 17:25
Delphi-Quellcode:
procedure schnittpunkte_suchen( var schnitt_X, schnitt_Y, x1, y1, x2, y2, x3, y3, x4, y4 : double );
var
   a : double;
begin
   a := (((x4 - x3) * (y1 - y3)) - ((y4 - y3) * (x1 - x3))) / (((y4 - y3) * (x2 - x1)) - ((x4 - x3) * (y2- y1)));
   schnitt_X := x1 + a * (x2 - x1);
   schnitt_Y := y1 + a * (y2 - y1);
end;
Das hatte ich bei mir schon eingabut, das tut auf jeden Fall so.

x1, y1 = Startpunkt x2,y2 = Endpunkt Gerade 1
x3, y3 Startpunkt x4,y4 = Endpunkt Gerade 2
schnitt_X und schnitt_y sind dann das Ergebnis

verteufelt mich jetzt nicht wegen des Codestiels das war eine meiner ersten Aufgaben, und ich hab das nur kurz raus kopiert.

Edit: Ich glaube es ist sogar egal ob es Startpunkt / Endpunkt ist, es mussen nur zwei Punkte auf der Geraden sein, wegen der Steigung
In C geschrieben und schön war zuletzt Franz Schuberts 9. Symphonie
  Mit Zitat antworten Zitat
Antwort Antwort


Forumregeln

Es ist dir nicht erlaubt, neue Themen zu verfassen.
Es ist dir nicht erlaubt, auf Beiträge zu antworten.
Es ist dir nicht erlaubt, Anhänge hochzuladen.
Es ist dir nicht erlaubt, deine Beiträge zu bearbeiten.

BB-Code ist an.
Smileys sind an.
[IMG] Code ist an.
HTML-Code ist aus.
Trackbacks are an
Pingbacks are an
Refbacks are aus

Gehe zu:

Impressum · AGB · Datenschutz · Nach oben
Alle Zeitangaben in WEZ +1. Es ist jetzt 11:09 Uhr.
Powered by vBulletin® Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
LinkBacks Enabled by vBSEO © 2011, Crawlability, Inc.
Delphi-PRAXiS (c) 2002 - 2023 by Daniel R. Wolf, 2024-2025 by Thomas Breitkreuz