AGB  ·  Datenschutz  ·  Impressum  







Anmelden
Nützliche Links
Registrieren
Zurück Delphi-PRAXiS Programmierung allgemein Programmieren allgemein Weiterführung vom "Thread Fermats Vermutung"
Thema durchsuchen
Ansicht
Themen-Optionen

Weiterführung vom "Thread Fermats Vermutung"

Ein Thema von dizzy · begonnen am 22. Apr 2006 · letzter Beitrag vom 21. Mai 2006
 
Benutzerbild von Nikolas
Nikolas

Registriert seit: 28. Jul 2003
1.528 Beiträge
 
Delphi 2005 Personal
 
#11

Re: Weiterführung vom "Thread Fermats Vermutung"

  Alt 25. Apr 2006, 15:01
Der obere Teil bezieht sich auf die Aussage, dass man jede reelle Zahl durch einen unendlichen Dezimalbruch darstellen kann.
Ich habe eher den unteren Beweis nach Dedekind gemeint.

Was sagst du denn gegen das Argument, dass man keine Zahl zwischen diesen Zahlen finden kann?
Für dein x kannst du keinen Wert angeben, der wirklich größer als Null ist.

In deinem Edit benutzt du den Ausdruck 1/unendlich, der im reellen nicht definiert ist. Damit willst du dann die Addition aus den reellen Zahlen mit einer rellen und eine nicht-reellen Zahl ausführen, was nicht zulässig ist.

Zitat:
Dann kommt logischerweise immer noch 0.0 unendlich 0 und eine 1 raus
Nun ja. Dann hast du ein Zahl x aus R für die gilt: x=x/2 oder auch x/2=0. Somit kann dieses x für deine anfängliche Gleichung nicht passen, da du da ein x aus R>0 gesucht hast.
Erwarte das Beste und bereite dich auf das Schlimmste vor.
  Mit Zitat antworten Zitat
 


Forumregeln

Es ist dir nicht erlaubt, neue Themen zu verfassen.
Es ist dir nicht erlaubt, auf Beiträge zu antworten.
Es ist dir nicht erlaubt, Anhänge hochzuladen.
Es ist dir nicht erlaubt, deine Beiträge zu bearbeiten.

BB-Code ist an.
Smileys sind an.
[IMG] Code ist an.
HTML-Code ist aus.
Trackbacks are an
Pingbacks are an
Refbacks are aus

Gehe zu:

Impressum · AGB · Datenschutz · Nach oben
Alle Zeitangaben in WEZ +1. Es ist jetzt 18:56 Uhr.
Powered by vBulletin® Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
LinkBacks Enabled by vBSEO © 2011, Crawlability, Inc.
Delphi-PRAXiS (c) 2002 - 2023 by Daniel R. Wolf, 2024-2025 by Thomas Breitkreuz