AGB  ·  Datenschutz  ·  Impressum  







Anmelden
Nützliche Links
Registrieren
Zurück Delphi-PRAXiS Programmierung allgemein Programmieren allgemein Weiterführung vom "Thread Fermats Vermutung"
Thema durchsuchen
Ansicht
Themen-Optionen

Weiterführung vom "Thread Fermats Vermutung"

Ein Thema von dizzy · begonnen am 22. Apr 2006 · letzter Beitrag vom 21. Mai 2006
 
Benutzerbild von negaH
negaH

Registriert seit: 25. Jun 2003
Ort: Thüringen
2.950 Beiträge
 
#11

Re: Weiterführung vom "Thread Fermats Vermutung"

  Alt 25. Apr 2006, 15:31
Zitat:
Was sagst du denn gegen das Argument, dass man keine Zahl zwischen diesen Zahlen finden kann?
Für dein x kannst du keinen Wert angeben, der wirklich größer als Null ist.
Das stimmt, ICH kann keinen konkreten Wert angeben, kann aber Formal nachweisen das es einen Wert geben muß der als Differenz eben unendlich klein aber nicht Null ist.

1 - 1/unendlich != 1

Das muß Fakt bleiben, da

0 != 1/unendlich


Der Term "unendlich" ist dabei nicht weg zu bekommen, er bleibt als Term immer erhalten. Dabei ist es egal ob man die 1 durch 2 oder jede andere Zahl ersetzt. Nur 1/unendlich - 1/unendlich == 0 kann richtig sein.

1 - 1/unendlich = 0.9p
1 = 0.9p + 1/unendlich

Dividiert man zb. duch 2 so ergibt sich

0.49p = 0.5 - 0.5/unendlich

und es muß wieder 0.000 unendlich 0 und 1 rauskommen. Logisch, wir haben ja nur beide Seiten der Formal, beide Brüche quasi mit 2 dividiert, also rein garnichts Wertmäßig verändert.

Ergo: 1/unendlich dividiert x ist 1/unendlich, oder als Konsequenz dessen

Unendlich * x = Unendlich
Unendlich / x = Unendlich

wenn X != 0.

Führen wir das nun zurück:

1 = 0.9p + x, und X > 0

X muß größer 0 sein weil ansonsten nicht mehr gilt

Unendlich * x = Unenldich
Unendlich / x = Unendlich

und X != 0

Gelte aber X == 0 dann wäre

Unendlich * 0 != Unendlich
Unendlich / 0 != Unenldich <- übrigens nicht definiert !!

als muß es eine Differenz zwischen 1 und 0.9p geben, namlich 1/unendlich > 0.

Gruß Hagen
  Mit Zitat antworten Zitat
 


Forumregeln

Es ist dir nicht erlaubt, neue Themen zu verfassen.
Es ist dir nicht erlaubt, auf Beiträge zu antworten.
Es ist dir nicht erlaubt, Anhänge hochzuladen.
Es ist dir nicht erlaubt, deine Beiträge zu bearbeiten.

BB-Code ist an.
Smileys sind an.
[IMG] Code ist an.
HTML-Code ist aus.
Trackbacks are an
Pingbacks are an
Refbacks are aus

Gehe zu:

Impressum · AGB · Datenschutz · Nach oben
Alle Zeitangaben in WEZ +1. Es ist jetzt 06:48 Uhr.
Powered by vBulletin® Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
LinkBacks Enabled by vBSEO © 2011, Crawlability, Inc.
Delphi-PRAXiS (c) 2002 - 2023 by Daniel R. Wolf, 2024-2025 by Thomas Breitkreuz