AGB  ·  Datenschutz  ·  Impressum  







Anmelden
Nützliche Links
Registrieren
Thema durchsuchen
Ansicht
Themen-Optionen

[Mathe] Punktsymmetrie

Ein Thema von Namenloser · begonnen am 26. Feb 2012 · letzter Beitrag vom 27. Feb 2012
 
Benutzerbild von Desmulator
Desmulator

Registriert seit: 3. Mai 2007
Ort: Bonn
169 Beiträge
 
#21

AW: [Mathe] Punktsymmetrie

  Alt 27. Feb 2012, 09:58
Ansatz:
f(a+x) - b = f(a-x)+b
Alle zu untersuchende Punkte sind P(x, f(x)), somit
f(x+x) - f(x) = f(x-x) + f(x)
f(2x) - 2f(x) = f(0)
3 sin(2x) - 3 sin(2x) cos(2x) - 6 sin(x) - 6 sin(x) cos(x) = 0
Mit sin(2x) = 2 sin(x) cos(x) und cos(2x) = cos²(x) - sin²(x) ergibt sich
3 * 2 sin(x) cos(x) - 3 ( 2 sin(x) cos(x) ) ( cos²(x) - sin²(x) ) - 6 sin(x) - 6 sin(x) cos(x) = 0
Zusammenfassen
-6 ( sin(x) cos(x) ) ( cos²(x) - sin²(x) ) - 6 sin(x) = 0
Klammer lösen, ausmultiplizieren, durch -6 teilen
sin(x) cos³(x) - cos(x) sin³(x) + sin(x) = 0
Ist null wenn sin(x) = 0 und das ist bei n π mit n als natürlich zahl.
Somit liegen die Symmetriepunkte bei S(n π, f(n π)).
Für alle n ist f(n π) = 0, d.h. S(n π, 0).
Also genau dort wo die vorher vermuteten Punkte liegen.
Lars

Geändert von Desmulator (27. Feb 2012 um 11:46 Uhr)
  Mit Zitat antworten Zitat
 


Forumregeln

Es ist dir nicht erlaubt, neue Themen zu verfassen.
Es ist dir nicht erlaubt, auf Beiträge zu antworten.
Es ist dir nicht erlaubt, Anhänge hochzuladen.
Es ist dir nicht erlaubt, deine Beiträge zu bearbeiten.

BB-Code ist an.
Smileys sind an.
[IMG] Code ist an.
HTML-Code ist aus.
Trackbacks are an
Pingbacks are an
Refbacks are aus

Gehe zu:

Impressum · AGB · Datenschutz · Nach oben
Alle Zeitangaben in WEZ +1. Es ist jetzt 22:53 Uhr.
Powered by vBulletin® Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
LinkBacks Enabled by vBSEO © 2011, Crawlability, Inc.
Delphi-PRAXiS (c) 2002 - 2023 by Daniel R. Wolf, 2024-2025 by Thomas Breitkreuz